Picture of Texting Doormat with Intel Edison
Doorbells are so old-fashioned. Who wants to rely on user input to tell you when someone is at your front door when you can use a microcontroller to tell you?
In this project, we’ll be building a pressure sensor that lives under your doormat. When the pressure sensor registers an input over a certain weight, it sends you a text using the Intel Edison and the Twilio API.
We’ll be using Node.js to run our sketch. If you’ve been reading my other Instructables about the Edison, this step is going to be the same as all the others. If you’ve already got an Edison with the Yocto image, feel free to skip to the next step.
Full disclosure, I’m working on a Mac, so these instructions will skew that way. To get started, you should have a freshly-flashed Edison. After you board is flashed, you can try to find the IP address and enter all the additional commands, or you can just “npm install bloop” on the machine that you’re trying to SSH in from. Bloop is a tool from Rex St. John, and it’s an absolute lifesaver when you’re working with the Edison. Instead of running “screen /dev/cu.usbserial-XXXXX 115200 -L”, all you have to do is run “bloop c” in terminal and it will connect to the Edison it finds on your network. Once you’re in, run “configure_edison –setup” to get your wi-fi and user creds defined.
While all this is happening, you can start downloading the Edison Yocto Image from this site. You want the link that says, “Edison Yocto complete image.” Once downloaded, you’ll need to load the files onto a micro SD card – you can read up on Yocto and how to get those files onto the SD card here. After you load the files, power down your Edison, insert the SD card, and the power it back up. To test your install is working, SSH into your Edison and type “node -v”. If that returns the version of Node that you have installed you’re good to go. If it says “Command not found,” you’re going to need to try loading Yocto onto the SD card again, because something went wrong.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey