Chameleons Change Colors With Crystals

NewImage

Scientists have discovered that chameleons rearrange crystals inside specialized skin cells to change colors. via BBC

Swiss researchers have discovered how chameleons accomplish their vivid colour changes: they rearrange the crystals inside specialised skin cells.
It was previously suggested that the reptiles’ famous ability came from gathering or dispersing coloured pigments inside different cells.
But the new results put it down to a “selective mirror” made of crystals.
They also reveal a second layer of the cells that reflect near-infrared light and might help the animals keep cool.
Reptiles make colours in two ways: they have cells full of pigment for warm or dark colours, but brighter blues and whites come from light bouncing off physical elements like these crystals: so-called “structural colours”.
These colours can also be mixed. A vibrant green might arise from a structural blue overlaid by yellow pigment.

NewImage

Published in the journal Nature Communications, the study was a collaboration between quantum physicists and evolutionary biologists at the University of Geneva.
First of all, the team noticed there were no big, spidery cells containing yellow or red pigment that could explain the shifts in hue.
They hit upon the importance of the crystals when they looked inside a type of cell called an “iridophore” using an electron microscope. Whichever angle they looked at them from, the crystals formed an incredibly neat, regular pattern – just the sort of arrangement that creates structural colours.
“When you see this with the eye of a physicist, you know it will have an effect on light,” said senior author Prof Michel Milinkovitch.
So Prof Milinkovitch and his colleagues set out to establish whether these crystals might explain not just the chameleon’s bright colours, but its changes to those colours as well.

Looking closely at video footage of the colour changes, they saw a pattern (from blue, through green, into yellow and orange) that could not be explained by the pigments available in the chameleon’s skin. But when they modelled what changes might be produced by shifting the spacing of the crystals, they found a very close match.
And, crucially, when they compared a tiny piece of “relaxed” chameleon skin with a sample from the same animal when it was “excited” (showing off in front of another male), there was an obvious change in the crystal pattern.
“The net effect is that it will work as a selective mirror,” Prof Milinkovitch told the BBC.
“Light will go through except for very specific wavelengths. If the distance between the layers is small, it reflects small wavelengths, like blue; if the distance is large it reflects larger wavelengths – for example, red.”

Read more


As 2022 starts, let’s take some time to share our goals for CircuitPython in 2022. Just like past years (full summary 2019, 2020, and 2021), we’d like everyone in the CircuitPython community to contribute by posting their thoughts to some public place on the Internet. Here are a few ways to post: a video on YouTub, a post on the CircuitPython forum, a blog post on your site, a series of Tweets, a Gist on GitHub. We want to hear from you. When you post, please add #CircuitPython2022 and email circuitpython2022@adafruit.com to let us know about your post so we can blog it up here.

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 32,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — Pololu’s account of the chip shortage

Wearables — Make it sticky

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Python for Microcontrollers — Python on Microcontrollers Newsletter: Raspberry Pi Pico turns one and more! #Python #CircuitPython @micropython @ThePSF

Adafruit IoT Monthly — 2021 in Recap!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NEW PRODUCT – ESP32­-S3­-DevKitC-1 – ESP32-S3-WROOM-2 – 32MB Flash 8MB PSRAM

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.