0

Snakes Teach Robots Trick Of The Tight Turn #Biomimcry

NewImage

Studying the snake movement to improve robot’s tight turns. via futurity

Knowing how sidewinder rattlesnakes are able to make rapid sharp turns in tight places could help researchers design snake robots to be even more valuable in urban search and rescue missions.

Researchers say the complex motion of a sidewinder can be described in two motions—vertical and horizontal body waves. Changing the phase and amplitude of the waves is how snakes achieve exceptional maneuverability.

“We’ve been programming snake robots for years and have figured out how to get these robots to crawl amidst rubble and through or around pipes,” says Howie Choset, professor of robotics at Carnegie Mellon University’s Robotics Institute.

NewImage

Doing the wave

“By learning from real sidewinders, however, we can make these maneuvers much more efficient and simplify user control. This makes our modular robots much more valuable as tools for urban search-and-rescue tasks, power plant inspections, and even archaeological exploration.”

The work, reported in the early edition of the Proceedings of the National Academy of Sciences, is a continuation of a collaboration between Choset, Daniel Goldman, associate professor of physics at Georgia Institute of Technology, and Joseph Mendelson III, director of research at Zoo Atlanta.

An earlier study published in the journal Science analyzed the ability of sidewinders to quickly climb sandy slopes. That study showed that despite the snake’s hundreds of body elements and thousands of muscles, the sidewinding motion could be simply modeled as a combination of a vertical and horizontal body wave.

Control and maneuverability

With the model in hand and with a method to measure the movements of living snakes, researchers on the new study were able to observe that sidewinders make gradual changes in direction by altering the horizontal wave while keeping the vertical wave constant.

They also discovered that making a large phase shift in the vertical wave allowed the snake to make a sharp turn in the opposite direction.

Applying these controls to the robot allowed it to replicate the turns of the snake, while also simplifying control.

Read more


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Biohacking — The Heart Rates of the Hazda

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.