Interestingly, the Apple Watch pixels look very different from the iPhone pixels. This may be because the Apple Watch display is an AMOLED screen, I don’t know. But what surprised me was the actual pixel imaging sites are quite small in comparison to previous pixels in say, the iPhone. This may have something to do with reducing the current load in a device that is very power sensitive. It seems that almost all conversations at Apple these days center around 3 things*, power/current, which relates directly to heat and this display seems to meet those issues by reducing the size of the power consuming light emitting components while preserving the resolution required to meet “Retina Display” requirements.
The other item of interest for me, and I think the biggest advancement for wearables aside from the Taptic Engine is the capacitive component or pressure sensitive, touch screen component of the display which I revealed through a bright indirect fiber optic light illumination. You can see the contact elements as orange dots over the red, green and blue sub pixels. I’m even less sure of how the pressure sensitivity works, unless it combines a different imaging modality like an IR backlight, but it certainly helps build the magic mystique of the device and it builds into the Watch a powerful new interface feature. If I had an IR sensitive camera handy or perhaps my old pair of NVGs, we could run a little experiment there.
Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey