Communicator Watch Takes Calls with FONA #WearableWednesday

communicator watch

DJ Harrigan wrote in to share his tutorial for a very handsome Communicator Watch on Instructables, inspired by Venture Bros., Fallout’s PipBoy, Star Trek, and more:

Teeny tiny communication devices that you can pin to your chest, strap to your arm, or pop into your ear have long been a sci-fi trope. While wrist-worn “two-way radios” have mostly either been toys or the result of movie magic, we’ve finally reached the point where it’s possible to actually build wearable technology that functions how people have envisioned for decades. Thanks to the amazing open-source hardware community, the technology to build advanced, connected devices is cheaper and easier than ever before! In this Instructable, I’ll show you how I designed and built my very own communicator watch that not only keeps the time, but allows me to make and receive phone calls from my wrist!


The Teensy 3.1 is my go to board for microcontroller projects. They’re fast (72 MHz+), inexpensive (~$20), and (by embedded standards) have oodles of memory (256K ROM, 64K SRAM). The 3.1 has a built-in RTC which makes time keeping a breeze. The only needed accessories are a 32.768 KHz crystal and a 3V battery backup to keep time.


I chose to design the interface around two momentary push buttons and a rotary encoder (with built-in switch) and a single slide SPDT switch. The slide switch directly controls power from the LiPo battery. Although I could have easily designed around just the encoder for the UI, scrolling and confirming for every single interaction takes time and can become tedious, plus I wanted to have the red and blue buttons a la the Venture Bros style communicators.


The heart of the system is a SIMCOM-800 chip, which mounted on Adafruit’s FONA breakout board. Short from designing my own PCB, the FONA is one of the most compact GSM breakout boards available, which is good for keeping things slim. The FONA is basically an all-in-one cellphone module, requiring only the minimum connections of a battery, speaker, microphone, and a host controller. I opted to attach a wee vibration motor as well for additional notification goodness.


I chose to use a 1.27″ 128×96 pixel OLED screen as the main display. I went with this module for many reasons: 128×96 is a 4:3 aspect ratio, which is a classic design, it draws minimal current, has razor sharp contrast, includes a microSD card slot on the back.


The system is powered by a 2000mAh LiPo battery, which is extraordinarily large for a wearable device (most are in the sub 500mAh range), but since this is essentially a cell phone, I wanted to have a realistic battery life of at least 8 hours. The battery is connected directly to the FONA module and the rest of the system is powered via a 5V step-up regulator that boosts the 3.7V source from the module’s VBAT pin. The power switch is located at the front edge of the control plate.

Flora breadboard is Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.