I like LiFePO4 batteries. They have a rather flat discharge at around 3.2V, which is ideal for powering 3.3V devices without a regulator. You can also use them in devices that take 2 standard AA cells by using a blank shunt in the 2nd battery slot since 2 fresh alkaline cells in series provide 3.2-3.3V. And since they are readily available in the 14x50mm AA size, you can use cheap AA holders for them in electronics projects.
When it comes to chargers, things can be a bit problematic. LiFePO4 batteries should be charged to 3.6V, rather than 4.2V like regular lithium-ion batteries. A good charger costs $10-$15, but charging at a high current will reduce the number of recharge cycles. The Soshine batteries I bought indicate on the label a standard charging current of 300mA to 3.6V. Rather than search for a charger to fit the bill, I decided to make one.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey