Via DesignSpark.
We were challenged by RS Components and Intel to see how we could put Intel technologies to use in underpinning the delivery of the Internet of Things. Of course, there are so many different technologies that we could have selected from and those that immediately spring to mind include the Edison and Galileo boards, that provide a fast on-ramp to developing IoT applications.
However, it occurred to us just how fundamental to the future of the IoT wireless communications is, whether that be at the level of a Personal Area Network (PAN) — based on, for example, Bluetooth Low Energy or IEEE802.15.4 — a low power WAN or cellular. Connected devices need, well, connectivity. And to deliver the IoT at scale will take sustained innovation in this area.
Software-defined radio, where radio communication system components such as filters and mixers that would have been implement in hardware are instead implemented in software, is allowing ever more advanced systems to be created and accelerating their development. However, you don’t get anything for nothing and digital signal processing (DSP) applications can be particularly demanding, with computationally intensive algorithms and blisteringly high data rates employed.
With the above in mind this led us towards using the capable Intel NUC Core i5 at the heart of a self-contained SDR appliance, packaged in a robust and familiar benchtop test equipment form factor. This will run Linux and applications based upon open source SDR frameworks, enabling it to be put to use in an vast array of wireless test, measurement and prototyping scenarios.