For about the last 3 years, the de-facto method of accessing physical components via the Raspberry Pi’s GPIO pins has been a Python library called RPi.GPIO, created by Ben Croston, who originally built it to control his beer brewing process. Despite its humble beginnings in a personal hobby project, it’s ended up being used in projects of all shapes and sizes by users around the world, and it has a big presence in education. In the Foundation, we’ve used it in many of our learning resources, and we use it at Picademy, our teacher training course.
Physical computing is one of the most engaging activities for teaching computing, and has plenty of scope in computational thinking, programming skills and logic as well as projects being more relevant to young people (think build a robot vs. sorting arbitrary lists).
Each Friday is PiDay here at Adafruit! Be sure to check out our posts, tutorials and new Raspberry Pi related products. Adafruit has the largest and best selection of Raspberry Pi accessories and all the code & tutorials to get you up and running in no time!
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey