Experimenting With Zebra Fish Using 3D Printed Replicas #Biomimicry
Researchers study Zebra fishes’ reactions to different size shoals using robotically manipulated 3D printed Zebra shoals. via iopscience
Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Select Python on Microcontrollers Newsletter: PyCon AU 2024 Talks, New Raspberry Pi Gear Available and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey