0

March 3, 2016 AT 2:00 am

3D Printed Lattices for Bone Tissue Engineering #3DThursday #3DPrinting

Modified laser cutter creates 3D objects from multiple materials popup

Researchers at Rice University are doing amazing work with 3D printed medical devices,Via 3Dprint

We’ve been following the story and progress of the OpenSLS platform for some time now, as we explored some of Andreas Bastian’s designs, to include this one, which has been underway since 2013 as the research team built a functional prototype—all funded by Dr. Jordan Miller’s Lab for microphysiological systems engineering and advanced materials, at Rice University. Bastian is one of the authors on the subject of the OpenSLS in a recent paper just published in Plos One, called ‘Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone,’ by Ian S. Kinstlinger, Andreas Bastian, Samantha J. Paulsen, Daniel H. Hwang, Anderson H. Ta, David R. Yalacki, Tim Schmidt, and Jordan S. Miller.

“Designing our own laser-sintering machine means there’s no company-mandated limit to the types of biomaterials we can experiment with for regenerative medicine research,” said Ian Kinstlinger, study co-author.

Through creating their own technology they’ve developed a system that–although probably not meant for the mainstream any time soon or probably ever—costs 40 times less than what they would have to purchase for the lab, and most importantly, allows them to work with the specialized materials they are developing as well. Also important is that their 3D printer can handle overhangs, which would not be the case otherwise.

The study itself outlines the development of—and future uses for—the OpenSLS platform, which while offering greater independence and affordability for the scientists, is also able to handle overhangs.

“OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials,” state the authors.

Central to the paper is the discussion of the usefulness for the macroporous structured 3D printed lattices the researchers have created with polycaprolactone (PCL), and how it will be useful in the construction of medical devices.

Read more


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!


Check out all the Circuit Playground Episodes! Our new kid’s show and subscribe!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Learn resistor values with Mho’s Resistance or get the best electronics calculator for engineers “Circuit Playground”Adafruit’s Apps!


Maker Business — How Intel Makes a Chip

Wearables — Tape tactics

Electronics — Ground connections cooler via more vias

Biohacking — Itch Tracker for Apple Watch

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.