As you probably know, pigments originally came from a large variety of organic sources. For example, blue often derives from lapis rock while the oldest source of bright green pigment is malachite, which is found in copper ore deposits.
Vantablack on the other hand is grown in labs and is actually made from carbon nanotubes—yes, tubes. This “forest” of highly condensed tubes, grown on the surface of aluminum, is what causes the dark pigment as well as helping to explain exactly why it is so dark.
So why IS Vantablack so incredibly dark?
In order to understand exactly how dark this material is, we have to go back to this idea of carbon nanotubes. Growing carbon nanotubes is not a new technology, and have been proposed for potential use in situations like cleaning oil spills and boosting solar energy storage due to its amazing structural makeup.
The material is 200 times stronger than steel, 1000 times more conductive than copper, and almost half the density of aluminum (an important point that we’ll revisit). According to the inventors of Vantablack, Surrey Nanosystems, when light interacts with this incredibly low density material it “is rapidly absorbed as it ‘bounces’ from tube to tube and simply cannot escape as the tubes are so long in relation to their diameter and the space between them. The near total lack of reflectance creates an almost perfect black surface.”
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey