0

April 28, 2016 AT 1:37 pm

From Sushi to Space: Particle Filters, Recursive Estimation, Covariance, and Kalman Filters Explained

I’m warning you now: You’ll need some time to read the article ‘How Kalman Filters Work, Part 1,’ and even then you might not understand it all. Nevermind that this is only part 1 (of 3) on LQE algorithms. As for the sushi reference, it’ll click as soon as you begin reading the article – and now I know what I want for lunch!

particle_demo_animation

Interestingly, the most intuitive forms of recursive estimation are only recently becoming popular, so we’re going to look at their history entirely backwards: starting from the most recent types, like particle filters, and working back into the ancient past (the 1960s) for the breakthrough that enabled the Apollo navigation algorithms to keep a spacecraft on a course to the moon: the Kalman filter.

lkf_demo_02

Read more here.


Check out all the Circuit Playground Episodes! Our new kid’s show and subscribe!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Learn resistor values with Mho’s Resistance or get the best electronics calculator for engineers “Circuit Playground”Adafruit’s Apps!


Maker Business — Limor Fried featured in NYC’s HER BIG IDEA!

Wearables — Get concrete solutions

Electronics — Probe Compensation

Biohacking — Dr. Rita Levi-Montalcini was a Centenarian Gonzo Biohacker

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.