How biomimicry can be applied to architecture #Biomimicry

0b1e4898 0fe5 4b2d 8984 f53b83d3bf58

Via The Financial Times

When nature has a problem, evolution weeds out what doesn’t work and selects the most effective adaptations. Humans could also address environmental problems by using biomimicry — examining nature’s solutions and applying them to human designs.

Early examples of biomimicry are found in Leonardo da Vinci’s sketches for flying machines and in the work of Filippo Brunelleschi: after studying the strength of eggshells, the
Renaissance architect designed a thinner, lighter dome for his cathedral in Florence, completed in 1436. Later, in 1719, paper producers shifted from using cotton and linen fibres after French entomologist Réne-Antoine Réaumur suggested the wasp’s use of wood pulp in nest-building demonstrated a better alternative. In 1809, naval architect Sir George Cayley studied dolphins to make ships’ hulls more streamlined.

Yet perhaps the most famous example of biomimicry came in 1948 when Swiss engineer George de Mestral walked his dog: it emerged from the bushes covered in burrs. After examining the burrs’ tiny hooks under a magnifying glass, he designed Velcro.

Biomimetic innovation has flourished over the past 20 years: we have satellite parts inspired by the folding patterns of hornbeam leaves, a lightweight concept car based on the boxfish, and a medical probe inspired by the way the wood wasp “drills” into wood with minimal force and without a rotating drill bit.

Today, biomimicry could be applied to climate change; to address food, energy and water security; to cope with resource shortages or biodiversity loss; and in building sustainable cities.

Every year, about 15bn tonnes of concrete are produced worldwide, releasing about the same tonnage of carbon dioxide. That rate of construction is set to continue as developing countries build the cities they need.

The closest equivalent to concrete in biology is coral, formed by organisms that create structures out of minerals in seawater. Yet there is a stark difference between making concrete and coral: producing the former releases a molecule of carbon dioxide for every atom of calcium in the cement, whereas making coral fixes (or binds) an atom of carbon with every atom of calcium. If we could apply the same process of biomineralisation — through biomimicry — to global concrete production, we could, in theory, remove billions of tonnes of CO2 from the atmosphere.

Read more

Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Biohacking — The Heart Rates of the Hazda

Python for Microcontrollers — CircuitPython 4.0.0 Alpha 1 released!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.