0

Charge Carriers: Conventional Flow vs Electron Flow, Explained by @baldengineer

conductors

While the conventional thinking is that electricity flows from positive to negative – such as in any simple battery-powered LED circuit – we know the opposite is true. But it doesn’t really matter, as explained by Bald Engineer as long as you use the same direction to analyze the entire circuit. Watch the video below for this 101 explanation on the two types of flow commonly expressed, and check out James’s Four Current Flow Myths Explained for more info.

A couple of weeks ago I wrote about four current flow direction myths. As a follow up to that popular post, I decided to dedicate this month’s AddOhms electronics tutorial video to Current Flow. In episode #19, I tackle the question of which way does current flow.

You might have heard about “conventional flow” and “electron flow.” In conventional flow, we assume that current flows from the positive voltage towards the negative voltage. In digital, the “negative voltage” is usually called ground. However, that’s not how the electrons move nor is it how they carry the charge around a circuit path.

Electron flow is the description of how electrons carry a charge. Which is the negative voltage towards the positive? This confusion is a result of Ben Franklin mistakingly identifying how electrons moved so many years ago. Yet, we have kept the “positive” and “negative” labels as they are today.

The key though is that it doesn’t matter which method you use to analyze a circuit. Electrons move in a closed path. So whether they travel from positive to negative or from negative to positive, doesn’t matter!

Above text from AddOhms #19 video notes; follow James at BaldEngineer.com for more great content.


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Battery wash cycle

Electronics — How to make your own magnetic field probe!

Biohacking — The State of DNA Analysis in Three Mindmaps

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.