0

July 10, 2016 AT 4:00 am

Getting a grip on mussel adhesion #Biohacking

Via A*STAR research

The Asian green mussel (Perna viridis) anchors itself underwater by timed secretion of adhesive proteins from threadlike foot extensions, a team of researchers in Singapore finds1.

Lab experiments and computer simulations reveal that an especially long sticky protein acts as a primer — first catching the surface and repelling water molecules to make way for two proteins that form the final adhesive pad.

The discovery could lead to new submersible glues or improved paints to prevent biofouling on ship hulls and drilling platforms.

“Water is not a friendly media for sticking stuff together, but many marine creatures are able to do it,” says Ali Miserez, who led the research at Nanyang Technological University, in collaboration with Chandra Verma at the A*STAR Bioinformatics Institute, with funding from the Maritime and Port Authority of Singapore and the Singapore Maritime Institute. “By getting a glimpse of what exists in nature, we can mimic and manipulate it toward something useful,” adds Verma.

Mussels, within seconds of feeling out a rock with their foot, begin to produce long, stiff and durable threads, called byssus — usually described as the mussel ‘beard’.

Miserez’s laboratory had previously identified the byssus proteins — Pvfp-3, -5 and -6 — but wanted to know if they released in sequence or all at once. His team took a series of samples in rapid succession from Asian green mussels induced to secrete byssus onto a glass plate.

Mass spectrometry revealed that one protein, Pvfp-5, always comes out first. Further analysis, using methods called the quartz crystal microbalance and the surface force apparatus, showed that Pvfp-5 adheres most strongly to the surface, and infrared spectroscopy detected a gradual displacement of water molecules only around the area where Pvfp-5 lands.

To better understand the structure and function of Pvfp-5, Miserez collaborated with Verma, whose laboratory at A*STAR specializes in structural modeling. Verma’s team built a three-dimensional atomic model of Pvfp-5 based on information gleaned from known structures of smaller protein fragments and then simulated its movement in water.

Read more

57677e09140ba0ed1d8b4569


Check out all the Circuit Playground Episodes! Our new kid’s show and subscribe!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Learn resistor values with Mho’s Resistance or get the best electronics calculator for engineers “Circuit Playground”Adafruit’s Apps!


Maker Business — Airbnb’s Internal University to Teach Data Science

Wearables — Faking wood

Electronics — Trouble with LM741

Biohacking — Nike’s Unlimited Stadium Will Put Your Best Foot Forward

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.