0

3D Printed Collaborative Spider Bots #3DPrinting

1460756618396
Via
Siemens

The next step in 3D printing could be something called mobile manufacturing. Siemens researchers in Princeton, New Jersey have developed prototype spider-like robots that can work collaboratively to print structures and surfaces, thus potentially accelerating production of large-scale, complex structures such as the fuselages of planes and the hulls of ships.

Large spiders have been spotted in labs at Siemens Corporate Technology’s Princeton campus. They have been caught depositing a thick, sweet-smelling, sticky material that appears to dry on contact to a smooth, shiny finish. Although ever more of the spiders are appearing, no one has sounded an alarm; and for good reason…

Instead of coming in from surrounding wooded areas, the spiders have journeyed from the virtual world, where they were conceived, to the very real world inhabited by people like Livio Dalloro, who heads the Product Design, Modeling and Simulation Research group in the Automation and Control Technology Field at Siemens Corporate Technology (CT). In Dalloro’s team, the spiders are known as SiSpis or Siemens Spiders, and they are recognized as promising representatives of what could someday be a new species of industrial worker.

“SiSpis are part of a larger picture that we define as Siemens Agile Manufacturing Systems (SiAMS) and they represent the core of our autonomous systems research here in Princeton,” says Dalloro, who explains that the spider-like bots are essentially fully autonomous additive manufacturing devices with legs. “We are looking at using multiple autonomous robots for collaborative additive manufacturing of structures, such as car bodies, the hulls of ships and airplane fuselages.” Additive manufacturing, also known as 3D printing, is a technology in which products or surfaces are created or refined by depositing layer after micro-layer of a selected material.
Collaboration is the Key

Of course, adding a layer of material to the inner surface of something the size of a ship’s hull is a job that would require more than just a few spiders. Most likely, hundreds would be needed. So the key question is: how would such an army of robots work together? The answer is a form of autonomy. “Each spider is capable of manufacturing only a small portion of a work piece,” explains Hasan Sinan Bank, who has played a leading role in the project and has filed multiple associated patents. “We are therefore trying to conceptualize and optimize the kinds of collaboration these robots should engage in.” This process is supported by algorithms developed by Dalloro’s team that allow multi-robot task planning so that two or more devices can collaborate on the additive manufacture or surface processing of a single object or area.

To accomplish this, the robots use onboard cameras as well as a laser scanner to interpret their immediate environment. Knowing the range of its 3D-printer arm, each robot autonomously works out which part of an area – regardless of whether the area is flat or curved – it can cover, while other robots use the same technique to cover adjacent areas. By dividing each area into vertical boxes, the robots can work collaboratively to cover even complex geometries in such a way that no box is missed. “No one else has attempted to do this using mobile manufacturing,” says Bank.

Read more

1460987458183


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 13,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? The Electronics Show and Tell with Google Hangouts On-Air is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — A list of companies owned by Amazon. It’s big.

Wearables — Stitch marks

Electronics — Capacitor ESR

Biohacking — Vitamin-C + Gelatin for Accelerated Recovery

Python for Microcontrollers — Python snakes its way to the STM32, Serpente, and more!

Adafruit IoT Monthly — Adafruit IO Updates, RGB Stream Deck Message Panel, and more

Microsoft MakeCode — Welcome to the MakeCode Newsletter!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.