A team of four MIT researchers has developed a new wearable sensor that can detect toxic gases and talk to smartphones or other wireless devices to warn users when they are in danger.
Using these sensors, the researchers hope to design badges that weigh less than a credit card and can be easily worn by military personnel on the battlefield.
“Soldiers carry a lot of equipment already, and a lot of communication devices,” said Timothy Swager, Professor of Chemistry at MIT and lead author on a paper describing the sensors that was published in the Journal of the American Chemical Society. The paper’s co-authors are post-doc student Shinsuke Ishihara and PhD students Joseph Azzarelli and Markrete Krikorian.
“Soldiers have no wearable sensors to detect toxic gases. They use a variety of detectors, but they’re not the kind of thing you can carry around. Our sensors weigh less than a piece of paper,” Swager said.
In layman’s terms, the system works as follows. The sensor is a circuit loaded with carbon nanotubes. Carbon nanotubes are cylindrical molecules that look like little wires.
“Let’s think about the wires we’re familiar with, such as electric wires,” Swager explained. “They’re wrapped in plastic.” As a result, the actual wire is insulated from the external environment and users are safe. In the carbon nanotubes case, insulation is not achieved thanks to a plastic case. “We wrapped the nanotubes with a polymer,” Swager explained.
When exposed to toxic gases, such as Sarin gas, the polymer breaks apart and the insulation disappears. Consequently, the nanotubes touch each other and become conductive. When this happens, a signal is sent to the smartphone.
Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey