Regrown Brain Cells Give Blind Mice a New View #Biohacking

B916B739 2A83 4260 A65712E10EDC71E5

A mix of gene manipulation and exercise is being used in research against glaucoma, spinal injury and Alzheimer’s, Via Scientific American

Researchers at Stanford University have coaxed brain cells involved in vision to regrow and make functional connections—helping to upend the conventional dogma that mammalian brain cells, once damaged, can never be restored. The work was carried out in visually impaired mice but suggests that human maladies including glaucoma, Alzheimer’s disease and spinal cord injuries might be more repairable than has long been believed.

Frogs, fish and chickens are known to regrow brain cells, and previous research has offered clues that it might be possible in mammals. The Stanford scientists say their new study confirms this and shows that, although fewer than 5 percent of the damaged retinal ganglion cells grew back, it was still enough to make a difference in the mice’s vision. “The brain is very good at coping with deprived inputs,” says Andrew Huberman, the Stanford neurobiologist who led the work. “The study also supports the idea that we may not need to regenerate every neuron in a system to get meaningful recovery.”

Other researchers praised the study, published Monday in Nature Neuroscience. “I think it’s a significant step forward toward getting to the point where we really can regenerate optic nerves,” says Don Zack, a professor of ophthalmology at Johns Hopkins University who was not involved in the research. He calls it “one more indication that it may be possible to bring that ability back in humans.”

Earlier studies had suggested that axons—the long arms that extend from neurons and conduct signals—could regrow in this way, but the Stanford research is the first to demonstrate this extent of regrowth and visual restoration, says Zack, who also co-directs the Johns Hopkins Center for Stem Cells and Ocular Regenerative Medicine. The study shows that a regenerating axon can grow in the right direction, forming the connections needed to restore function. “They can essentially remember their developmental history and find their way home,” Huberman says. “This has been the next major milestone in the field of neural regeneration.”

His team also found a novel, two-pronged approach to trigger this regeneration. Once cells in a mammal’s central nervous system reach maturity, they usually flip off a “growth switch” and never grow again. The researchers used genetic manipulation to turn this switch back on—activating the so-called “mammalian target of rapamycin” (mTOR) signaling pathway, which helps stimulate growth—and then they exercised the damaged eye, putting it to work by showing the mouse a display of moving, high-contrast stripes. “When we combined those two—molecular chicanery with electrical activity—we saw this incredible synergistic effect,” Huberman says. “The neurons grew enormous distances—500 times longer and faster than they would ordinarily.” The researchers found it particularly helpful to cover the mouse’s good eye and force it to look at the stripes only with its damaged eye, similar to the way a wandering eye improves in a child who is allowed to use only the weaker eye.

This combination of growth activation and visual input is what stimulates brain cells to grow in the first place, so it makes sense that both would be needed for regeneration, says Russell Van Gelder, a professor of ophthalmology at the University of Washington who was not involved in Huberman’s study. “It suggests that the conversation that occurred between the brain and eye in development…can be revived through a combination of appropriate growth factors to the retinal cells and an activity pattern that the brain somehow can utilize.”

Read more


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.