Adafruit Holiday Shipping Deadlines 2018: Attention! Please place all UPS 2 Day orders by Friday 12/14/2018 11 AM EST
0

Have We Reached the Athletic Limits of the Human Body? #Biohacking

13C5A8BA E26E 4500 95144C71E5B1DED4

Interesting read, Via Scientific American

At this month’s summer’s Olympic Games in Rio, the world’s fastest man, Usain Bolt—a six-foot-five Jamaican with six gold medals and the sinewy stride of a gazelle—will try to beat his own world record of 9.58 seconds in the 100-meter dash.

If he does, some scientists believe he may close the record books for good.

Whereas myriad training techniques and technologies continue to push the boundaries of athletics, and although strength, speed and other physical traits have steadily improved since humans began cataloguing such things, the slowing pace at which sporting records are now broken has researchers speculating that perhaps we’re approaching our collective physiological limit—that athletic achievement is hitting a biological brick wall.

Common sense tells us that of course there are limits to athletic achievement: Barring some drastic amendment to the laws of physics, no human will ever run at the speed of sound. And physiologically speaking there’s only so much calcium that can flood into a muscle cell causing it to contract; there’s only so much oxygen our red blood cells can shuttle around.

In this vein, in 2008 running enthusiast and Stanford University biologist Mark Denny published a study attempting to determine if there are absolute limits to the speeds animals can run. To do so he analyzed the records of three racing sports with long histories of documentation: track and field and horse racing in the U.S., along with English greyhound racing.

By plotting winning race times back to the turn of the 20th century and by controlling for population growth, Denny was able to conclude that there is indeed a predictable limit to the time it takes for a particular species to cover a certain distance. In fact, his data show that horse and dog racing as well as some human track and field events may already be there. “We’re definitely plateauing,” Denny says. “Just look at the horse racing data, which I think parallels what’s happening in humans. Winning times in the Triple Crown haven’t really [improved] since the 1970s—and this is despite all of the millions of dollars being poured into breeding faster horses.”

As Denny explains, horses can still be bred to improve on a particular attribute, however doing so comes with collateral physiological drawbacks. “You can breed a horse to go faster than ever before or to have stronger muscles but then its legs will break. It really looks like we’ve maxed out the gene pool for thoroughbreds.” And we could be next.

Genetically speaking, racing horses are an especially homogenous lot, as all thoroughbreds descend from just three stallions brought to England in the 17th and 18th centuries (and a slightly larger number of “foundation mares”). But Denny points out that in a number of women’s track events speeds have also leveled off, with many records going unbroken since the 1980s (when, as he puts it, many competitors were suspected of being “doped to the gills.”) Denny cites marathoner Paula Radcliffe’s 2003 world record time of 2:15:25 (purportedly unassisted by performance-enhancing drugs, despite an investigation) as being nearly at his predicted maximum speed for the women’s marathon. Male marathon runners may still have some wiggle room. Denny’s model predicts that the current record of 2:02:57 can be improved on by three or so minutes, in line with the much publicized pursuit of the two-hour men’s marathon.

Read more


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 9,200+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Japanese word working and more in December’s issue of HackSpace magazine!

Wearables — Solder-less magic

Electronics — = != ==.

Biohacking — Finding Bliss with Anandamide

Python for Microcontrollers — sysfs is dead! long live libgpiod! libgpiod for linux & Python running hardware @circuitpython @micropython @ThePSF #Python @Adafruit #Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.