Backward Propagation of Errors for Neural Networks Explained #Backpropagation

backpropogation

Rimstar explains the backpropagation algorithm used in neural networks:

Neural networks are a way of doing machine intelligence that is based roughly on how the brain works. The human brain has around 86,000,000,000 neurons, a type of cell, all connected in various ways with roughly 1.5×10^14 connections between them. Below you can see a diagram of a few connected neurons and what that would look like in an artificial neural network used in a computer.

Here’s a small backpropagation neural network that counts and an example and an explanation for how it works, how it learns. A neural network is a tool in artificial intelligence that learns how to do things instead of be hand-coded. Recently it’s been popularized with Google’s deep dreaming neural network and Deepmind’s AlphaGo beating world champion Lee Sedol at the game of go.


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — Making sure the CHIPS act isn’t just crumbs

Wearables — Our little secret to weather-proofing your projects

Electronics — Meaningful gains

Python for Microcontrollers — Python on Microcontrollers Newsletter: New Thonny and Git Versions, Plenty of Projects and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NEW PRODUCTS – CNC Rotary Encoder – 100 Pulses per Rotation – 60mm Black

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.