Fungi put to work extracting lithium from discarded batteries #Biohacking

Via NewAtlas

At the heart of devices like smartphones, tablets and electric cars are rechargeable batteries, and at the heart of those is lithium. With demand growing, mining isn’t sustainable long-term, so researchers are exploring the difficult task of reclaiming lithium from old discarded batteries. A new study has put three strains of fungi to work to extract these valuable materials from electronic waste, which could lead to a safer and greener battery recycling system.

Thanks to our thirst for ever-new technology, e-waste is an increasing problem, as tonnes of discarded electronics are dumped in landfills or incinerated, releasing potentially hazardous chemicals into the air, water and soil. In addition, many of the components are made from rare and valuable materials like lithium and cobalt, so finding ways to reclaim them can help take the pressure off limited natural resources.

But even then, separating out important metals often requires solvents and high temperatures. Looking for a greener alternative, the researchers, from the University of South Florida, turned to three strains of fungi: Aspergillus niger, Penicillium simplicissimum and Penicillium chrysogenum.

“We selected these strains of fungi because they have been observed to be effective at extracting metals from other types of waste products,” says Jeffrey Cunningham, the project’s lead. “We reasoned that the extraction mechanisms should be similar, and, if they are, these fungi could probably work to extract lithium and cobalt from spent batteries.”

First, the batteries are taken apart and the cathodes are pulverized, before a fungus is introduced. As the microbes go to work, they generate organic acids which effectively leach out the metals.

“Through the interaction of the fungus, acid and pulverized cathode, we can extract the valuable cobalt and lithium,” says Cunningham. “We are aiming to recover nearly all of the original material.”

At the moment, the team has managed to extract up to 85 percent of the lithium and 48 percent of the cobalt, thanks to the oxalic and citric acid that the fungi produces. Unfortunately, once they’re out of the batteries the metals are left in a liquid acidic medium, so the next step for the researchers is to separate the lithium and cobalt from that liquid.

“We have ideas about how to remove cobalt and lithium from the acid, but at this point, they remain ideas,” says Cunningham. “However, figuring out the initial extraction with fungi was a big step forward.”

With that concept shown to work, the team will continue to explore different types of fungi and their acids, to determine if any others can perform the extraction better. The technique may help reduce e-waste and meet the growing lithium demand, at least until systems making use of alternatives, like pyrite and organic compound flow batteries, can be developed.

The research will be presented at the 252nd National Meeting & Exposition of the American Chemical Society this week.

Read more


Halloween season is here!
Halloween season is here! Check out all the posts, gift guides, and more!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 10/9/24 Feat. Adafruit RP2040 Snap-on Enclosure for Adafruit Feather RP2040 USB Host

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Milton Survival Issue: Two New Python Versions, Visualize WiFi and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — Garden Lights, Bluetooth 6.0, and more!

Maker Business – Adafruit Daily — First Solar’s $1.1 billion development of vertically integrated factory in the U.S.

Electronics – Adafruit Daily — My signal isn’t THAT noisy, is it?

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.