Here’s How to Convince the Brain That Prosthetic Legs Are Real

Image 20160912 3799 1r4cmhr

Interesting article Via Singularityhub

The carbon fiber legs or “blades” used by lower limb amputee runners have arguably become one of the most iconic symbols of the Paralympic Games. Although different lower-limb sports prostheses are used for running, jumping, and other activities, they share a single common aim: they are designed to help paralympians run faster and jump higher or further than other competitors. Form follows function.

For those who have prostheses for more everyday uses, however, their replacement limbs need to be able to adapt to different scenarios and perform a variety of functions, not just excel in one discipline — just like an actual leg. So how can we make prostheses feel more like the real thing rather than a specialist tool?

Whereas modern running blades have a distinctive hook shape, one of the most promising engineering approaches for everyday prostheses is to closely model the biological design of a leg, ankle and foot. This approach is referred to as “biomimicry.”

A “passive” ankle-foot prosthesis generally uses elastic like a spring to replicate the behavior of the Achilles tendon, storing elastic energy and releasing it before ankle push-off. “Active” prostheses additionally use an actuator or motor to make up for the power previously provided by the calf muscle at every step. Such prostheses have been shown to help users walk more like a non-amputee and improve symmetry between the biological and the artificial limb. At the moment, this mainly applies to walking overground at steady speeds rather than activities such as climbing stairs.

Other ways to make a prosthesis more like a biological leg and improve the user’s comfort are more simple. They also illustrate how important it is to involve the amputee in the design process. One user of the most advanced bionic ankle currently available told me its greatest feature was not that it provided a powered push-off or that it allowed them to walk more like a non-amputee. Instead, it was that the foot dropped flat on the ground when sitting with an outstretched leg, rather than sticking up awkwardly at a 90-degree angle (as is the case for the majority of prosthetic feet).

Another issue is how the prosthesis is controlled. Active prostheses now include on-board computers to control the motors and emulate human walking. Prostheses are effectively becoming more and more like wearable robots. What’s more, we can even use interfaces that read signals from the brain or muscles so that the user can operate the prosthesis like a real leg just by thinking and moving in their normal way. The next step being trialed is the use of implantable electrodes that send signals to the brain to give the user tactile feedback so they can feel the contact on the prosthesis as if it were their biological limb, closing the human-machine loop.

Read more


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.