The BeagleBone Black is an inexpensive, credit-card sized computer that has two built-in microcontrollers called PRUs. While the PRUs provide the real-time processing capability lacking in Linux, using these processors has a learning curve. In this article, I show how to run a simple program on the PRU, and then dive into the libraries and device drivers to show what is happening behind the scenes.
The BeagleBone uses the Sitara AM3358, an ARM processor chip running at 1 GHz—this is the thumbnail-sized chip in the center of the board below. If you want to perform real-time operations, the BeagleBone’s ARM processor won’t work well since Linux isn’t a real-time operating system. However, the Sitara chip contains two 32-bit microcontrollers, called Programmable Realtime Units or PRUs. (It’s almost fractal, having processors inside the processor.) By using a PRU, you can achieve fast, deterministic, real-time control of I/O pins and devices.
The nice thing about using the PRU microcontrollers on the BeagleBone is that you get both real-time Arduino-style control, and “real computer” features such as a web server, WiFi, Ethernet, and multiple languages. The main processor on the BeagleBone can communicate with the PRUs, giving you the best of both worlds. The downside of the PRUs is there’s a significant learning curve to use them since they have their own instruction set and run outside the familiar Linux world. Hopefully this article will help with the learning curve.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Open Hardware is In, New CircuitPython and Pi 5 16GB, and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey