0

October 17, 2016 AT 11:00 am

University of Tokyo’s JSK Lab’s Kengoro Sweats to Cool Down

mjgxotk2na

From IEEE Spectrum:

The researchers, from the University of Tokyo’s JSK Lab led by Professor Masayuki Inaba, were trying to figure out how to add a cooling system to their 1.7-meter tall, 56-kilogram musculoskeletal humanoid named Kengoro (who joins Kojiro and Kenshiro as part of the JSK robot family). Kengoro is already stuffed to the brim with structural components, circuit boards, gears, and 108 motors (!), and there was simply no room to add active water cooling with tubes and a radiator and fans. The researchers started looking at how they could make better use of Kengoro’s existing components, and they came up with the idea of using the robot’s skeletal structure (its metal frame) as a coolant-delivery system.

The approach goes way beyond just running water channels through the frame and circulating water through them, since that wouldn’t have solved the problem of needing to place a radiator in there somewhere. The researchers instead decided to try a passive technique, allowing the water to seep out through the frame around the motors to cool them evaporatively. In other words, Kengoro sweats.

Read more


Check out all the Circuit Playground Episodes! Our new kid’s show and subscribe!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Learn resistor values with Mho’s Resistance or get the best electronics calculator for engineers “Circuit Playground”Adafruit’s Apps!


Maker Business — The Not-So-Secret Code That Powers Robots Around the Globe

Wearables — Glitter big

Electronics — Turn the heat up! when unleaded

Biohacking — Google Sheets Based Life Tracking Dashboards

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.