When most of us see a taffy-pulling machine cranking away on a touristy boardwalk, we think of sweet, sweet sugar. Jean-Luc Thiffeault thinks of sweet, sweet math. As an applied mathematician at the University of Wisconsin-Madison, Thiffeault is particularly interested in the way materials like taffy get mixed: In the machine, the candy is stretched and folded over and over to incorporate air and develop its light, chewy texture. As it’s pulled, the original rectangle of taffy gets stretched more and more—its length growing exponentially by the same ratio each time. That stretch ratio is what interests Thiffeault.
When a person pulls taffy, they’ll generally take the lump of candy and stretch it over a hook, bringing the two ends together. Then they’ll take that folded piece and stretch it over the hook again, doubling the length, and so on. In other words, “The human way of doing it is a multiplication factor of 2,” says Thiffeault. Mechanical pullers can do better, often yielding larger, exotic irrational numbers as their stretch factors.
It turns out that taffy pulling can be modeled by an abstract field of mathematics known as topological dynamics, essentially the study of long-term, large-scale changes over time in a mathematical space. (If the word topological sounds familiar, it was in the news recently as part of this year’s Nobel Prize in Physics.) The same mathematics that describes taffy-pulling also has more serious applications: many industrial processes, including glassblowing and drug preparation, require viscous fluids to be mixed in ways that are more like pulling taffy than stirring cream into coffee. “If you’re trying to stir really viscous things, like pharmaceutical industry pastes, you can’t just shake them,” says Thiffeault. “It’s not like mixing paint.”
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Select Python on Microcontrollers Newsletter: PyCon AU 2024 Talks, New Raspberry Pi Gear Available and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey