0

Using math to build the ultimate taffy machine

NewImage

Via Smithsonian Mag

When most of us see a taffy-pulling machine cranking away on a touristy boardwalk, we think of sweet, sweet sugar. Jean-Luc Thiffeault thinks of sweet, sweet math. As an applied mathematician at the University of Wisconsin-Madison, Thiffeault is particularly interested in the way materials like taffy get mixed: In the machine, the candy is stretched and folded over and over to incorporate air and develop its light, chewy texture. As it’s pulled, the original rectangle of taffy gets stretched more and more—its length growing exponentially by the same ratio each time. That stretch ratio is what interests Thiffeault.

When a person pulls taffy, they’ll generally take the lump of candy and stretch it over a hook, bringing the two ends together. Then they’ll take that folded piece and stretch it over the hook again, doubling the length, and so on. In other words, “The human way of doing it is a multiplication factor of 2,” says Thiffeault. Mechanical pullers can do better, often yielding larger, exotic irrational numbers as their stretch factors.

It turns out that taffy pulling can be modeled by an abstract field of mathematics known as topological dynamics, essentially the study of long-term, large-scale changes over time in a mathematical space. (If the word topological sounds familiar, it was in the news recently as part of this year’s Nobel Prize in Physics.) The same mathematics that describes taffy-pulling also has more serious applications: many industrial processes, including glassblowing and drug preparation, require viscous fluids to be mixed in ways that are more like pulling taffy than stirring cream into coffee. “If you’re trying to stir really viscous things, like pharmaceutical industry pastes, you can’t just shake them,” says Thiffeault. “It’s not like mixing paint.”

Read more.

NewImage


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — Your job’s a joke, you’re broke, your semiconductor is DOA

Biohacking — The Heart Rates of the Hazda

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.