0

Ulticasting: A new method for soft robot fabrication #robotics #softrobotics

NewImage

Thanks to Aidan from Super-Releaser for writing in to share this post with us!

In the world of soft robotics, advanced manufacturing often plays an integral role in the fabrication of complex and intricate structures. In many cases, 3D printers, CNC machines, laser cutters, and more are irreplaceable. Here at Super-Releaser, 3D printers are key to our prototyping workflow, and as a result of this relationship, enhancement in advanced manufacturing often results in innovation in the field. A great example is how multi-material jetting printers allowed researchers at the Harvard Wyss Institute in 2015 to create a jumping robot that smoothly integrates both hard and soft components.

Recently, students at Delft University of Technology also developed such an innovation: a 3D printing system that allows for easier fabrication of silicone structures while being very inexpensive. The team, consisting of design and engineering undergraduates Christoffer Bendtsen, Oliver Groot, Max Nobel, and Luc van den Boogart set out to investigate new methods of fabricating soft robots, specifically by investigating a concept originally explored by Lars Rossing called UltiCasting. The UltiCast system consists of a modified Ultimaker 2+ 3D printer that has a paste extruder system with motorized syringes (similar to the likes of the MakerBot Frostruder) alongside the normal nozzle. The main nozzle prints out a thin-walled mold made from PVA, a water-soluble plastic, and then uses the secondary extruder to passively mix a 1:1 silicone resin and dispense it into the shell mold.

After the silicone has cured, it can be taken off the printer and the plastic mold can be dissolved away, leaving just the silicone behind. By having the casting process automated like this and pouring the mold as it is printed, the UltiCast system speeds up the fabrication of a silicone structure tremendously. It also reduces the room for human error, as having the mold printed and casted as one operation eliminates the need for complex mold assemblies.

Read more.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 12,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? The Electronics Show and Tell with Google Hangouts On-Air is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — What’s next for Indiegogo after leadership shakeup

Wearables — Turn up the volume

Electronics — Code like everyone’s watching

Biohacking — Stroboscopic Visual Training

Python for Microcontrollers — Python on hardware measures up, FEATHER soars, and more! #Python #Adafruit #CircuitPython #PythonHardware @circuitpython @micropython @ThePSF @Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



1 Comment

  1. I think I am missing something. I followed the links and watched a video of an Ultimaker that printed a mold of PVA and then intermittently filled that mold with curing silicone. I am not sure exactly what the end goal of all of that was, but it seems like a really inefficient way to do that. Why not print the thing you want to make out of silicone, make a mold out of it, then pour the curing silicone into the mold? mixing silicone by hand is easy and much faster, plus if you make a mold, you can make multiples without continually reprinting and dissolving your mold.

    Maybe I missed something, if so i apologize.

    Paul

Sorry, the comment form is closed at this time.