Texas Hold’em AI Bot Taps Deep Learning to Demolish Humans

Mjg3MTE5MA

Via IEEE Spectrum

A fresh Texas Hold’em-playing AI terror has emerged barely a month after a supercomputer-powered bot claimed victory over four professional poker players. But instead of relying on a supercomputer’s hardware, the DeepStack AI has shown how it too can decisively defeat human poker pros while running on a GPU chip equivalent to those found in gaming laptops.

The success of any poker-playing computer algorithm in heads-up, no-limit Texas Hold’em is no small feat. This version of two-player poker with unrestricted bet sizes has 10160 possible plays at different stages of the game—more than the number of atoms in the entire universe. But the Canadian and Czech reseachers who developed the new DeepStack algorithm leveraged deep learning technology to create the computer equivalent of intuition and reduce the possible future plays that needed to be calculated at any point in the game to just 107. That enabled DeepStack’s fairly humble computer chip to figure out its best move for each play within five seconds and handily beat poker professionals from all over the world.

“To make this practical, we only look ahead a few moves deep,” says Michael Bowling, a computer scientist and head of the Computer Poker Research Group at the University of Alberta in Edmonton, Canada. “Instead of playing from there, we use intuition to decide how to play.”

This is a huge deal beyond just bragging rights for an AI’s ability to beat the best human poker pros. AI that can handle complex poker games such as heads-up, no-limit Texas Hold’em could also tackle similarly complex real-world situations by making the best decisions in the midst of uncertainty. DeepStack’s poker-playing success while running on fairly standard computer hardware could make it much more practical for AI to tackle many other “imperfect-information” situations involving business negotiations, medical diagnoses and treatments, or even guiding military robots on patrol. Full details of the research are published in the 2 March 2017 online issue of the journal Science.

Imperfect-information games have represented daunting challenges for AI until recently because of the seemingly impossible computing resources required to crunch all the possible decisions. To avoid the computing bottleneck, most poker-playing AI have used abstraction techniques that combine similar plays and outcomes in an attempt to reduce the number of overall calculations needed. They solved for a simplified version of heads-up, no-limit Texas Hold’em instead of actually running through all the possible plays.

Such an approach has enabled AI to play complex games from a practical computing standpoint, but at the cost of having huge weaknesses in their abstracted strategies that human players can exploit. An analysis showed that four of the top AI competitors in the Annual Computer Poker Competition were beatable by more than 3,000 milli-big-blinds per game in poker parlance. That performance is four times worse than if the AI simply folded and gave up the pot at the start of every game.

See more!


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.