Intel’s 8008 Arithmetic-Logic Unit Logic Gates Deconstructed, Reverse-Engineered

Here’s another great blog by Ken Shirriff about the Intel 8008 microprocessor, which turns 45 next month. This time he takes a look at – physically, just look at that die shot close-up! – the chip’s ALU, segmenting the unit into its various sub-components and then further scrutinizing how it all works. The ‘notes and references’ on the blog post alone are a treasure trove of further reading an analysis of this groundbreaking component!

A computer’s arithmetic-logic unit (ALU) is the heart of the processor, performing arithmetic and logic operations on data. If you’ve studied digital logic, you’ve probably learned how to combine simple binary adder circuits to build an ALU. However, the 8008’s ALU uses clever logic circuits that can perform multiple operations efficiently. And unlike most 1970’s microprocessors, the 8008 uses a complex carry-lookahead circuit to increase its performance.

The 8008 was Intel’s first 8-bit microprocessor, introduced 45 years ago.1 While primitive by today’s standards, the 8008 is historically important because it essentially started the microprocessor revolution and is the ancestor of the x86 processor family that you are probably using right now.2 I recently took some die photos of the 8008, which I described earlier. In this article, I reverse-engineer the 8008’s ALU circuits from these die photos and explain how the ALU functions.

Read more.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 27,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — To make it through a tough business cycle, layoffs should be a last resort

Wearables — Don’t miss the forest for the trees

Electronics — Oscilloscope Jumble

Python for Microcontrollers — Python on Microcontrollers Newsletter: 300 CircuitPython Libraries, Python Turns 30! #Python #Adafruit #CircuitPython @micropython @ThePSF

Adafruit IoT Monthly — Upcycling Smartphones, AI Freezer, and more!

Microsoft MakeCode — Play MakeCode Arcade games on Raspberry Pi!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 2/17/2021 Feat. Adafruit 1.54″ Tri-Color eInk / ePaper 200×200 Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.