Wireless tech checks health by measuring walking speed #WearableWednesday


Via New Atlas

Scientists are increasingly looking at predicting health issues such as cognitive decline, cardiac disease, pulmonary disease or future falls via decreases in the patient’s walking speed. And while there are already methods of measuring that speed, some of them can be obtrusive, or don’t provide a true picture of the manner in which the patient typically walks. With that in mind, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed a no-contact system that measures a person’s true walking speed wirelessly.

Currently, the main method of measuring walking speed (aka gait velocity) involves timing the patient with a stopwatch. This causes them to be very aware of the fact that they’re being tested, however, and may result in them walking faster or slower than they would normally.

Devices such as fitness trackers or GPS-enabled smartphones don’t provide very accurate readings, plus the latter won’t work indoors. Another approach is to place a depth-sensing camera in the patient’s home and then analyze footage of them walking, although many patients may find that to be an invasion of their privacy.

That’s where the new “WiGait” system comes in.

Designed by a team led by Prof. Dina Katabi, it’s an extension of technology that was previously developed for MIT’s WiTrack system. It incorporates a flat device that hangs on a wall in the patient’s home, emitting radio signals that contain about one-hundredth the amount of radiation of a standard cellphone.

As the patient walks around their home – even if they’re in another room – the system notes the precise times and locations at which their body reflects back the signals that are sent out. By analyzing that data, it is able to determine their walking speed (and any changes in it) with a claimed accuracy of 95 to 99 percent. It’s also 85 to 99 percent accurate at measuring their stride length, which is known to decrease due to conditions such as Parkinson’s disease.

Read more.

Flora breadboard is Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!

Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Despite multiple bankruptcies, RadioShack continues to find ways to keep the lights on

Wearables — Tape, meet 3D printing

Electronics — A few words on inductor resistance

Biohacking — Running Blades

Python for Microcontrollers — CircuitPython is officially awesome!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.