Four years ago a citizen science game called Eyewire hatched from Seung Lab, then at MIT and now at Princeton. Its goal was to pair up gamers with a challenge that has been bottlenecking neuroscience for decades: mapping the brain. Over the years the project grew. Hundreds of thousands of people helped, enabling new discoveries and stunning visualizations of neurons.
After years of work, Mystic, the first Eyewire expansion pack, will go live on June 30 and be open to any qualifying Eyewire player. Mystic teleports players across brain dimensions; specifically, from the mouse retina world of Eyewire to the hindbrain of a larval zebrafish, that we’re going to call zfish for short. We’re mapping a region similar to the brainstem in humans. It’s an important junction in motor control containing cells called “integrator neurons” that transform signals related to movement. Zfish are small animals, widely studied for two reasons. First, when zfish are in their young larva state, they are transparent, allowing researchers to see neurons through living tissue. Second, there is a large “mutant database” allowing researchers to study what is different when certain genes or cells are altered.
Since Eyewire’s launch in late 2012, gamers have been reconstructing neurons from a mouse retina at nanoscale precision by solving puzzles. The pieces to those 3D puzzles were generated by AI (artificial intelligence) using methods to volumetrically segment a serial stack of images. Eyewire has lived at the intersection of human and artificial intelligence since the beginning, so it’s fitting that the next chapter comes alongside an advancement in AI.
In Mystic, the human-machine collaboration expands, allowing players to directly throttle a threshold of an AI named Msty, whose name derives from “Mean Spanning Tree,” a method of determining whether neighboring 3D supervoxels belong together. By throttling up and down, players adjust how quickly — and recklessly — the software automatically maps branches, allowing for intricate cooperation between humans and machines to solve big problems.
The Mystic dataset is 3.3 times higher resolution than Eyewire — each pixel is 5 nm — and unlike Eyewire, these new images reveal intracellular structures like mitochondria and vesicles. Also unlike Eyewire, the Mystic volume contains functional data gathered by Emre Aksay and team from Cornell University. Using two-photon calcium imaging, they were able to reveal the firing patterns of live integrator neurons, shown in the video below.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.