Adafruit will not be shipping orders Martin Luther King Jr. Day, Monday January 21, 2019. Any expedited orders placed after 11am ET Friday January 18 will go out Tuesday January 22.
0

Object Recognition: GitHub Repo + Whitepaper for ‘Finding Tiny Faces’

We describe a detector that can find ~800 faces out of the reportedly 1000 present, by making use of novel characterization of scale, resolution, and context to find small objects. Detector confidence is given by the color bar on the right. Can you confidently identify errors?

Though tremendous strides have been made in object recognition, one of the remaining open challenges is detecting small objects. We explore three aspects of the problem in the context of finding small faces: the role of scale invariance, image resolution, and contextual reasoning. While most recognition approaches aim to be scale-invariant, the cues for recognizing a 3px tall face are fundamentally different than those for recognizing a 300px tall face. We take a different approach and train separate detectors for different scales. To maintain efficiency, detectors are trained in a multi-task fashion: they make use of features extracted from multiple layers of single (deep) feature hierarchy. While training detectors for large objects is straightforward, the crucial challenge remains training detectors for small objects. We show that context is crucial, and define templates that make use of massively-large receptive fields (where 99% of the template extends beyond the object of interest). Finally, we explore the role of scale in pre-trained deep networks, providing ways to extrapolate networks tuned for limited scales to rather extreme ranges. We demonstrate state-of-the-art results on massively-benchmarked face datasets (FDDB and WIDER FACE). In particular, when compared to prior art on WIDER FACE, our results reduce error by a factor of 2 (our models produce an AP of 81% while prior art ranges from 29-64%).

See the GitHub repo here, read more here and read whitepaper here.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 9,700+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

What do you want from CircuitPython in 2019?

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — A field guide to designing your PCBs, learned the hard way

Wearables — A glowing start point

Electronics — Current limiting!

Biohacking — A Gene to Predict Modafinil Response

Python for Microcontrollers — Python snakes its way on the SparkFun SAMD21 Mini, Hackaday.io, 10k thanks, and Tim’s magazine #Python #Adafruit #CircuitPython @circuitpython @micropython @ThePSF @Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.