The data captured by today’s digital cameras is often treated as the raw material of a final image. Before uploading pictures to social networking sites, even casual cellphone photographers might spend a minute or two balancing color and tuning contrast, with one of the many popular image-processing programs now available.
This week at Siggraph, the premier digital graphics conference, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory and Google are presenting a new system that can automatically retouch images in the style of a professional photographer. It’s so energy-efficient, however, that it can run on a cellphone, and it’s so fast that it can display retouched images in real-time, so that the photographer can see the final version of the image while still framing the shot.
The same system can also speed up existing image-processing algorithms. In tests involving a new Google algorithm for producing high-dynamic-range images, which capture subtleties of color lost in standard digital images, the new system produced results that were visually indistinguishable from those of the algorithm in about one-tenth the time — again, fast enough for real-time display.
The system is a machine-learning system, meaning that it learns to perform tasks by analyzing training data; in this case, for each new task it learned, it was trained on thousands of pairs of images, raw and retouched.
The work builds on an earlier project from the MIT researchers, in which a cellphone would send a low-resolution version of an image to a web server. The server would send back a “transform recipe” that could be used to retouch the high-resolution version of the image on the phone, reducing bandwidth consumption.
We #celebratephotography here at Adafruit every Saturday. From photographers of all levels to projects you have made or those that inspire you to make, we’re on it! Got a tip? Well, send it in!
If you’re interested in making your own project and need some gear, we’ve got you covered. Be sure to check out our Raspberry Pi accessories and our DIY cameras.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.
Python for Microcontrollers — Python on Microcontrollers Newsletter: 100 CircuitPython Community Libraries, a New Arduino UNO and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi