The First Computer ‘Bug’ Recently Celebrated its 70th Birthday
On September 9th, 1947, Grace Hopper removed a moth from the Harvard Mark II, thereby removing the first ‘bug’ from a computer and giving rise to the terms bug & debugging that are essentially synonymous with programming today.
Among the programming practices that Hopper perfected at Harvard was the subroutine, those chunks of code for specific tasks that are stored once but can be called upon when needed at different points in the main program. “A subroutine is a clearly defined, easily symbolized, often repeated program,” she wrote. “Harvard’s Mark I contained subroutines for sine x, log10 x, and 10x, each called for by a single operational code.” It was a concept that Ada Lovelace had originally described in her “Notes” on the Analytical Engine. Hopper collected a growing library of these subroutines. She also developed, while programming the Mark I, the concept of a compiler, which would eventually facilitate writing the same program for multiple machines by creating a process for translating source code into the machine language used by different computer processors.
In addition, her crew helped to popularize the terms bug and debugging. The Mark II version of the Harvard computer was in a building without window screens. One night the machine conked out, and the crew began looking for the problem. They found a moth with a wingspan of four inches that had gotten smashed in one of the electromechanical relays. It was retrieved and pasted into the log book with Scotch tape. “Panel F (moth) in relay,” the entry noted. “First actual case of bug being found.” From then on, they referred to ferreting out glitches as “debugging the machine.”
By 1945, thanks largely to Hopper, the Harvard Mark I was the world’s most easily programmable big computer. It could switch tasks simply by getting new instructions via punched paper tape rather than requiring a reconfiguration of its hardware or cables. However, this distinction was largely unnoticed, both then and in history, because the Mark I (and even its 1947 successor, the Mark II) used slow and clackety electromechanical relays rather than electronic components such as vacuum tubes. “By the time anybody knew anything about her,” Hopper said of the Mark II, “she was a dead duck, and everybody was going electronic.”
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey