Black Lives Matter - Action and Equality. ... Adafruit is open and shipping.
0

The First Computer ‘Bug’ Recently Celebrated its 70th Birthday

On September 9th, 1947, Grace Hopper removed a moth from the Harvard Mark II, thereby removing the first ‘bug’ from a computer and giving rise to the terms bug & debugging that are essentially synonymous with programming today.

Among the programming practices that Hopper perfected at Harvard was the subroutine, those chunks of code for specific tasks that are stored once but can be called upon when needed at different points in the main program. “A subroutine is a clearly defined, easily symbolized, often repeated program,” she wrote. “Harvard’s Mark I contained subroutines for sine x, log10 x, and 10x, each called for by a single operational code.” It was a concept that Ada Lovelace had originally described in her “Notes” on the Analytical Engine. Hopper collected a growing library of these subroutines. She also developed, while programming the Mark I, the concept of a compiler, which would eventually facilitate writing the same program for multiple machines by creating a process for translating source code into the machine language used by different computer processors.

In addition, her crew helped to popularize the terms bug and debugging. The Mark II version of the Harvard computer was in a building without window screens. One night the machine conked out, and the crew began looking for the problem. They found a moth with a wingspan of four inches that had gotten smashed in one of the electromechanical relays. It was retrieved and pasted into the log book with Scotch tape. “Panel F (moth) in relay,” the entry noted. “First actual case of bug being found.” From then on, they referred to ferreting out glitches as “debugging the machine.”

By 1945, thanks largely to Hopper, the Harvard Mark I was the world’s most easily programmable big computer. It could switch tasks simply by getting new instructions via punched paper tape rather than requiring a reconfiguration of its hardware or cables. However, this distinction was largely unnoticed, both then and in history, because the Mark I (and even its 1947 successor, the Mark II) used slow and clackety electromechanical relays rather than electronic components such as vacuum tubes. “By the time anybody knew anything about her,” Hopper said of the Mark II, “she was a dead duck, and everybody was going electronic.”

Read more here – via Harvard on Twitter.


We are angry, frustrated, and in pain because of the violence and murder of Black people by the police because of racism. We are in the fight AGAINST RACISM. George Floyd was murdered, his life stolen. The Adafruit teams have specific actions we’ve done, are doing, and will do together as a company and culture. We are asking the Adafruit community to get involved and share what you are doing. The Adafruit teams will not settle for a hash tag, a Tweet, or an icon change. We will work on real change, and that requires real action and real work together. That is what we will do each day, each month, each year – we will hold ourselves accountable and publish our collective efforts, partnerships, activism, donations, openly and publicly. Our blog and social media platforms will be utilized in actionable ways. Join us and the anti-racist efforts working to end police brutality, reform the criminal justice system, and dismantle the many other forms of systemic racism at work in this country, read more @ adafruit.com/blacklivesmatter

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 20,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — To make it through a tough business cycle, layoffs should be a last resort

Wearables — Everything in its place

Electronics — The Case Of The Disappearing Capacitance

Python for Microcontrollers — Python on Microcontrollers Newsletter: New Hardware, Python Releases and Much More! #Python #Adafruit #CircuitPython @circuitpython @micropython @ThePSF

Adafruit IoT Monthly — BLE Store Capacity Indicator, Aquarium Automation, and more!

Microsoft MakeCode — Virus Destroyer!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NewProducts 8/6/2020 Feat. #Adafruit #ST25DV16K I2C #RFID #EEPROM #Breakout – STEMMA QT / Qwiic!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.