Robotic bees could take the sting out of Colony Collapse Disorder #Biohacking

Shutterstock 587113340

Via Venturebeat

America’s agricultural sector faces an unprecedented crisis. Native honeybees, one of the most prolific pollinators in the animal kingdom, are dying off at an unprecedented rate from Colony Collapse Disorder (CCD) and threatening an ecosystem service worth about $15 billion.

Supported by the National Science Foundation (NSF), the RoboBees project looks to minimize the loss of this critical resource with new microbots that can mimic the pollinating role of a honeybee. But the project has a number of challenges to overcome before these robots can take to the skies.

Harvard’s RoboBees

The RoboBee is a microrobot inspired by the biology of a honey bee. In a remarkable display of biomimicry, scientists have developed a flight-capable robot that’s just half the size of a paperclip and weighs in at one tenth of a gram.

“This is a proof of concept — there’s nothing compared to this. It’s a totally first-time demonstration,” said lead author Eijiro Miyako, a chemist at the National Institute of Advanced Industrial Science in Tsukuba, Japan, in an article published in Scientific American.

The RoboBees project pushes the boundaries of research in a variety of fields, from micromanufacturing to energy storage and even the computer algorithms that control the robots by the swarm.

Controlled flight

In 2012, scientists at Harvard showcased the first controllable flight of an insect-scale robot, heralding the first major breakthrough and proof of concept for these prototype bots. The RoboBee achieves flight using piezoelectric actuators, small strips of ceramic material that expand and contract when an electric current is supplied, mimicking muscle tissue. The wings operate independently, allowing for controlled flight — a miraculous achievement for a robot that weighs less than an actual honeybee.

Breakthroughs in manufacturing

The RoboBee owes its weight and size achievements to new microscale manufacturing methods that make use of a technology called “pop-up microelectromechanical (MEM) technologies.” Pop-up MEMs allow unprecedented scale for the RoboBees and open doors for further development.

See more!

Join 7,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — American startups are having an increasingly smaller share of the market

Wearables — Switch the advantage

Electronics — Don’t float!

Biohacking — Optimizing the Warm Up

Python for Microcontrollers — CircuitPython 3.0.0 released!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.