We humans have looked around us and received inspiration from the natural world throughout the course of our evolution. Many such observations have led to the invention of tools, technology and theories that have changed the way we work and live, augmenting what in many instances are our comparatively meager sensory and physical attributes.
One of the latest examples of what has come to be called “biomimicry” originates at Stanford University, where solar energy researchers have drawn inspiration from the compound eyes of a fly to create a honeycomb scaffolding made from low-cost epoxy resin commonly used in electronics manufacturing to enhance the stability of perovskite solar photovoltaic (PV) cells without sacrificing anything in the way of power conversion efficiency.
Commercial prospects are global and mass market in scope and scale, with the potential to produce perovskite PV energy cells and products in ribbons, adhesive strips and flexible forms that can conform to almost any size or shaped surface regardless of what the underlying material is made from.
The Stanford University research team has already filed a provisional patent for their perovskite PV lattice structure, and they are moving forward with the aim of further improving their durability and power/energy conversion efficiency. Coincidentally, they are focused on developing new form factors, such as flexible perovskite PV sheets and ribbons, as well as designs for industrial tools and processes that can scale production up to commercial levels, Reinhold Dauskardt, Stanford University professor of materials science and engineering and senior author of the research study published in Energy & Environmental Science, told Solar Magazine.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.
Python for Microcontrollers — Python on Microcontrollers Newsletter: CircuitPython 8.1.0 and 8.2.0-beta0 out and so much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi