The 200-ton Building-Sized Electronic Instrument from 1987 #MusicMonday

In 1906 Thaddeus Cahil built a 200 ton electronic synthesizer. It took thirty railroad cars to transport the machine from its construction site in Massechusetts to a Manhattan, where it was reconstructed in the basement of a building on Broadway and 39th. Cahil had a public performance as a way to drum up subscribers. Subscribers would get music transmitted to them through the telephone network.

So in 1906 a guy invented a giant proto-synthesizer to create the worlds’ first Spotify.  — via 120 Years of Electronic Music

In 1895 Thaddeus Cahill submitted his first patent for the Telharmonium “The Art of and Apparatus for Generating and Distributing Music Electrically”. The Telharmonium can be considered the first significant electronic musical instrument and was a method of electro-magnetically synthesising and distributing music over the new telephone networks of victorian America.

The core of his invention was the tone wheel; essentially a rotor with variably shaped alternators  that spun within a magnetic field (The early versions used rheotomes; a set of brushes that contacted the rotor as it spun.) to generate a tone. Each tone wheel was composed of the fundamental tone and six ascending partials. The first model consisted of a mainframe of twelve identical rotors each of the twelve pitch-rotors carried seven fundamental alternators, six third-partial alternators, and five fifth-partial alternators. These rotors were spun at the relevant speed by a belt driven motor, giving the instrument a six octave range. This arrangement gave the Telharmonium two tuning systems; one being a pure harmonic series used for building the timbre of each note, and the other, an equal tempered scale used for combining notes into a scale.

For the Telharmonium to be audible beyond a telephone receiver it needed a much more current than the standard telephone; the output power from the Telharmonium’s alternators was as much as 15,000 watts and around 1 amp at the receiver – compared to a telephone receiver designed for currents aslow as six ten-trillionths of an amp. This power did allow the Telharmonium to be audible to an audience but caused interference with the New York telephone network and needed a huge amount of electricity to keep it running.

The first description of the sound of the Telharmonium was from Ray Stannard Baker writing for McClure’s magazine describing a demonstration of the Washington MkI Telharmonium at the Hotel Hamilton;

“The first impression the music makes upon the listener is its singular difference from any music ever heard before : in the fullness, roundness, completeness, of its tones. And truly it is different and more perfect: but strangely enough, while it possesses ranges of tones all its own, it can be made to imitate closely other musical instruments: the flute, oboe, bugle, French horn and ‘cello best of all, the piano and violin not as yet so perfectly. Ask the players for fife music and they play Dixie for you with the squealing of the pipes deceptively perfect. Indeed, the performer upon this marvelous machine, as I shall explain later, can “build up” any sort of tone he wishes : he can produce the perfect note of the flute or the imperfect note of the piano — though the present machine is not adapted to the production of all sorts of music, as future and more extensive machines may be.

Read more!

Article in The Atlantic

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.