The wings of a butterfly have inspired a new type of solar cell that can harvest light twice as efficiently as before and could one day improve our solar panels.
Solar panels are usually made of thick solar cells, and are positioned at an angle to get the most amount of light from the sun as it moves throughout the day. Thin film solar cells, which can be only nanometers thick, have a lot of potential. These are cheaper and lighter, but because they’re less efficient, we usually use them only in watches and calculators, instead of solar panels. Scientists studied the black wings of the rose butterfly, and copied the structure to create thin solar cells that are more efficient. Unlike other types of cells, these can absorb a lot of light regardless of the angle, and are also easy to make. The results were published in the journal Science Advances.
The rose butterfly is native to Southeast Asia. Because it is cold-blooded and needs sunlight to fly, its black wings have evolved to be very good at absorbing energy. “The really interesting thing is that the butterflies, which have evolved these complex structures as a result of selection over millions of years, are still way outperforming our engineering,” YaleNUS College biology professor Vinod Saranathan told The Verge in an email. (Saranathan was not involved in the study.)
To figure out why these butterflies are so efficient, scientists led by Radwanul Siddique, a bioengineer at the California Institute of Technology, looked at wings under an electron microscope and created a 3D model of the wings’ nanostructures. The wings are built from tiny scales that are covered in randomly spaced holes. The holes are less than a millionth of a meter wide, and they help scatter the light and help the butterfly absorb heat.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.
Python for Microcontrollers — Python on Microcontrollers Newsletter: MicroPython Pico W Bluetooth, CircuitPython 8.0.4 and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi