While fitness trackers include some excellent tools for reviewing health data there are limitations such as overlaying data from different sources when looking for patterns. Below are two examples of graphing health data using IPython’s popular data science libraries (panda and matplotlib). In these examples I have exported my heart rate variability and resting heart rate data from the last month into two column CSV files. The data is being graphed with the Anaconda IPython ‘qtconsole’ utility.
Installing IPython:
Anaconda provides a simple installer blob which supports Linux, Windows and OS/X. This is probably the easiest all platform solution to get the core data science tools in place. Packages can be managed with conda after installation.
Once Anaconda is installed you can launch the ‘qtconsole’ within Anaconda Navigator.
Example 1:
Import and Graph Heart Rate Variability (HRV)
Using a CSV file with two columns (Day and HRV) you can see just how easy it is to create a simple plot of the values for the last month. See example1.py
Example 2:
Graph Heart Rate Variability compared to Resting Heart Rate
I have noticed that there appears to be a rough inverse correlation between heart rate variability and resting heart rate. The theory being a high HRV value is a sign of readiness for more activity and a low RHR value indicates the same. Let’ see how the two look when we overlay the data. The RHR CSV file and example2.py are available.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey