Paper is poised to be the next key material for developing flexible energy sources for next-generation wearable devices thanks to an international team of researchers from the United States and South Korea.
Researchers from the Georgia Institute of Technology—collaborating with scientists from Korea University—have developed a flexible and inexpensive-to-fabricate paper-based supercapacitor that could be used to help power biomedical and fitness wearables, sensors to power the Internet of Things (IoT), and myriad other devices.
“Flexible energy storage devices are a key enabling factor for the propagation of wearable or paper electronics in biomedical, consumer electronics, and military applications,” said Seung Woo Lee, an assistant professor in the Woodruff School of Mechanical Engineering at Georgia Tech, who led the research. “In this work, we demonstrated high-performance, flexible energy storage devices based on the paper substrates.”
Paper and textile substrates have been considered ideal materials for energy sources for wearable tech due to their low cost, flexibility, and highly porous structures—which can absorb active electrode materials, he told Design News. However, one limitation has been that these substrates must be coated with electrically conductive materials due to their insulating nature to generate electricity.
Supercapacitors commercially are not as widely used as batteries because while they have high power density, they often have low energy density—which means they charge fast and have long lifecycles, but can’t store as much energy as batteries per unit weight. The goal of the team in their work was to boost the energy density of the supercapacitors while maintaining their high power output.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey