Have you ever wondered just how much your hamster runs throughout the day/night? How far? How fast? The results are unbelievable.
The measurement system is very simple. The laser break beam sensor will be aimed at a small target on the wheel that will only reflect the beam once per full rotation of the wheel. The Pi will detect each time the wheel turns a full rotation and calculate the distance traveled and speed (the distance traveled is simply the circumference of the wheel). The resulting measurements will be captured and streamed to a data visualization that you can look at when you wake up each morning (because your hamster is probably getting his workout on while you sleep at night).
The laser break beam sensor from Adafruit is a good choice for this project because of its simplicity to wire up and use. No extra weight will be added to the wheel to make it harder to spin for your 2 oz. dwarf hamster. Both the laser transmitter and receiver are built into the same small plastic housing. If the laser beam reflects off of a target within 1 meter or so, the receiver detects and outputs the break. This is much better than a traditional laser break sensor that requires a separate receiver that must be aligned to the laser (like your garage door sensor that can easily get off track if you touch it). The laser break beam sensor will have three wires to attach. Attach the red wire to 5V. Attach the black wire to ground. The blue wire will be the sensor output. Connect this wire to a 10K ohm pull-up resistor and to an input pin on your Pi as shown below. *Warning* Do not shine the laser into the living area of your hamster!!! You could cause damage to your hamster’s eyes. If your wheel is inside the cage, consider using a magnetic contact switch instead of a laser break beam sensor.
Each Friday is PiDay here at Adafruit! Be sure to check out our posts, tutorials and new Raspberry Pi related products. Adafruit has the largest and best selection of Raspberry Pi accessories and all the code & tutorials to get you up and running in no time!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey