DIY Closed Loop Controlled Filament Dryer by @jimscuba2386

jimleemhuis/ shares:

One way to dry filament is to put it in an oven. This is great if you want to spend the money on a food dehydrator or your spouse doesn’t mind you putting plastic into your nice new kitchen oven. However, one other way it to use a chamber and a light bulb. This method works well but different materials can require different temperatures due to glass transition temperature (the point where plastic begins to soften). By using arduino, we can build a closed loop control drying box that works similar to your oven. Set your max temperature allowed, your amount of temperature tolerance, the number of hours you’d like to dry and you’re good to go. The controller heats the chamber up to your max set temp, turns the light off until the chamber hits the Max temp – tolerance then turns the light back on again to continue cycling. After the specified number of hours, the controller switches to “Humidity Hold mode”. The user inputs a maximum percentage humidity to hold in the chamber and the controller only turns the light on long enough to keep the humidity below that percentage. It’s a nice energy saver mode if you’re not going to get to your newly-dried filament right away and bag it up. Through our testing, I’ve been able to dry nylon that was submerged in water for a few days and get perfect prints again!

read the full guide on: http://www.instructables.com/id/DIY-Closed-Loop-Controlled-Filament-Dryer/

Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

The Adafruit Learning System has dozens of great tools to get you well on your way to creating incredible works of engineering, interactive art, and design with your 3D printer! If you’ve made a cool project that combines 3D printing and electronics, be sure to let us know, and we’ll feature it here!

Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Fewer startups, and other collateral damage from the 2018 tariffs

Wearables — Light as a Worbla feather

Electronics — How to make your own magnetic field probe!

Biohacking — The State of DNA Analysis in Three Mindmaps

Python for Microcontrollers — One year of CircuitPython weeklies!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.