The world is getting flooded with tiny (creepy) robots that can crawl all over the place, including your clothes. The latest one, created by scientists at Harvard University, uses artificial scaly skins to move forward — kind of like a snake.
The soft robot is just a silicone rubber tube. But what’s special about it is its skin — a thin, stretchable plastic sheet that’s been cut with a laser. The cuts, in the shape of triangles or circles, resemble the scales on the skin of snakes. When air is pumped into the tube, the robot expands and contracts, allowing the scales to pop up, anchor against the surface, and pull the robot forward. In a study published today in Science Robotics, scientists showed that the artificial snakeskins work against rough surfaces like asphalt and concrete. In the future, these robots could be scaled down and used to deliver drugs inside arteries, or in disaster situations where bots need to crawl inside narrow spaces.
Nature has inspired all kinds of robots before. Octopi have served as squishy muses many times, either because of their amazing camouflage or their wiggly shapes. Plants and salamanders have also played their part. The inspiration for today’s bots comes from snakes, which use scales on their skin to propel themselves. To mimic the snakeskin, Ahmad Rafsanjani, a postdoctoral researcher at Harvard University, resorted to the Japanese art of paper cutting, called kirigami. He used lasers to make cuts in thin plastic sheets in the shape of lines, triangles, circles, or trapezoids. The skins were then wrapped around silicone rubber tubes powered by air. (The air was either pumped through tubes, or thanks to a small control unit with onboard pump, battery, and sensors.)
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Diving into the Raspberry Pi RP2350, Python Survey Results and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey