Predicting Papaya Ripeness with Computer Vision Algorithm

NewImage

From IEEE Spectrum via Science Direct:

The University of Campinas researchers teamed up with computer scientists from Londrina State University in Londrina, Brazil to develop the machine learning approach that achieved an overall ripeness detection accuracy of 94.7 percent. Their work appears in the February issue of the journal Computers and Electronics in Agriculture.

Measuring ripeness—and identifying relevant features for ripeness—was one of the biggest challenges. The researchers started out with a government guidance chart that listed five levels of papaya ripeness. But they soon consolidated ripeness levels into three maturity levels based on visual inspection: Visually, the outer peel of the golden papayas starts out green and yellows as the fruit ripens. They further verified the three levels with additional testing based on each fruit’s pulp firmness.

Training the machine learning algorithm also proved an unexpected challenge: It required a diverse selection of papayas. Researchers had hoped to get a large number of papayas from a local producer but eventually found themselves buying 57 golden papayas at a local market in Campinas.

Both the hardware and software components of the project proved relatively straightforward. On the hardware side, researchers built a boxy contraption with a consumer digital camera and light bulbs positioned on the ceiling to take illuminated pictures of the papaya samples. Success with such consumer-grade technology means this approach could be adapted fairly readily to commercial applications.

On the software side, the researchers considered a number of different machine learning algorithms before settling upon the common random forest classifier. This approach enabled the researchers to clearly see how different papaya features factored into the machine learning algorithm’s results. “We could see which features are really providing useful information about the fruit,” Barbin explains.

A deep learning approach based on neural networks also might have yielded good results for visually identifying ripe papayas. But the Londrina State University colleagues were wary of the black box nature of deep learning algorithms that usually makes it extremely difficult to figure out how deep learning comes up with any given result. Furthermore, a deep learning approach would have required a potentially far greater sample of papayas in the training dataset to achieve reasonable accuracy.

Read more from IEEE Spectrum and Science Direct


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NEW PRODUCTS – 22-pin 0.5mm pitch FPC Flex Cables for DSI CSI or HSTX – 5cm / 10cm / 20cm

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: The latest on Raspberry Pi RP2350-E9, Bluetooth 6, 4,000 Stars and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — IoT Vulnerability Disclosure, Decorative Dorm Lights, and more!

Maker Business – Adafruit Daily — A look at Boeing’s supply chain and manufacturing process

Electronics – Adafruit Daily — Autoscale is cheating!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.