Analogies for Understanding and Problems for Speculating on How DNA Creates 3-Dimensional Structures
Interesting quick-read from Quanta magazine on how we’re all essentially comprised of basic ‘instruction’ sets known as DNA:
One of the miracles of nature is embryogenesis: the transformation of a single fertilized egg cell into an embryo that will eventually become a fully formed baby animal. Various analogies have been applied to this process, from the primitive concept of a blueprint to Richard Dawkins’ cake recipe that calls for genetic ingredients. To my mind, the best analogy comes from Gary Marcus’ 2004 book The Birth of the Mind: How a Tiny Number of Genes Creates the Complexities of Human Thought. According to Marcus, embryogenesis most resembles a genetic computer program that produces a three-dimensional living organism. Marcus states that every gene is like a single line of code. All the genes together form the master DNA program, which is copied and run simultaneously in trillions of cells to achieve this miracle of physicochemical engineering.
Our first problem explores the kind of issues that need to be solved by DNA programming to create 3-D structures. Note that this example is not based on an actual biological case but is meant to illustrate the general principles of how chemical gradients can be used by the embryo in conjunction with constraints in properties of available molecules.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.