In the last part we saw that combinational circuits are combinations of logic gates that operate in a fully functional manner (meaning that for a given configuration of inputs, there is a corresponding set of outputs which always result from those inputs). Notably, the circuit has no state, it always works the same way.
Sequential circuits, on the other hand, do have state. They typically have an input (or inputs) that can cause the state to change.
Onward
Similar to combinational logic, we’ll start with the building blocks of sequential logic: the flip-flop in its various forms. Once we go over the basics we’ll look at some ways we can use them in larger circuits.
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Python for Microcontrollers — Python on hardware, a portal to a world of fun! #Python #Adafruit #CircuitPython @circuitpython @micropython @ThePSF @Adafruit
Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !