0

These diamonds from space formed inside a long-lost planet, scientists say

via The Washington Post

Ten years ago, an Arizona astronomer spotted an asteroid that was headed straight for Earth. Swiftly he summoned the help of colleagues and casual stargazers, who tracked the space rock as it exploded in the sky, raining shrapnel down on the Nubian desert in Sudan. Students from the University of Khartoum volunteered to search for fragments, ultimately recovering more than 600 pieces of the meteorite now known as Almahata Sitta. It was the first time scientists had ever traced an asteroid in the sky to a rock they could hold in their hands.

But that is not even the coolest thing about Almahata Sitta. Not nearly.

A new study published in the journal Nature Communications reports that the meteorite contains tiny diamonds — yes, diamonds. Those diamonds contain even tinier impurities called inclusions. And within those inclusions are signatures of a long-lost planet as large as Mars — a 4.5 billion-year-old relic that was destroyed during the earliest days of the solar system.

“These samples are coming from an era that we don’t have any access to,” said Farhang Nabiei, a materials scientist at the Swiss Federal Institute of Technology in Lausanne and the lead author of the new report. The diamonds with the Almahata Sitta meteorite formed during a transition era in the solar system, when the dust and gas that swirled around the sun coalesced into planetary embryos, then grew into planets.

“And we are part of the planets,” Nabiei said. “This is part of the story of how we came to be.”

Almahata Sitta belongs to a class of rocks known as ureilites. They are partly differentiated — not made of the primitive material that constituted the solar nebula, but also not as well mixed and baked as rocks that come from modern planets. Unlike other meteorites, which can be traced to parent bodies such as asteroids, Mars or the moon by comparing the ratios of different varieties of elements, these rocks have no known source. They seem to have been formed inside bodies that no longer exist.

And they always contain tiny flecks of diamond.

Read and see more!


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,700+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Wearable Myo ends production, soon to release smart glasses

Wearables — Resist warmth

Electronics — Hi-res mode for the (detailed) win!

Biohacking — Biohacking : The Wobbler Solution

Python for Microcontrollers — The Python powered synth is here @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.