Grace Hopper Once Handed Out Lengths of Wire to Represent How Far Electrical Signal Traveled in a Nanosecond | #makerhistory

From the National Museum of American History:

This bundle consists of about one hundred pieces of plastic-coated wire, each about 30 cm (11.8 in) long. Each piece of wire represents the distance an electrical signal travels in a nanosecond, one billionth of a second. Grace Murray Hopper (1906–1992), a mathematician who became a naval officer and computer scientist during World War II, started distributing these wire “nanoseconds” in the late 1960s in order to demonstrate how designing smaller components would produce faster computers.
The “nanoseconds” in this bundle were among those Hopper brought with her to hand out to Smithsonian docents at a March 1985 lecture at NMAH. Later, as components shrank and computer speeds increased, Hopper used grains of pepper to represent the distance electricity traveled in a picosecond, one trillionth of a second (one thousandth of a nanosecond).

Read more.


As 2022 starts, let’s take some time to share our goals for CircuitPython in 2022. Just like past years (full summary 2019, 2020, and 2021), we’d like everyone in the CircuitPython community to contribute by posting their thoughts to some public place on the Internet. Here are a few ways to post: a video on YouTub, a post on the CircuitPython forum, a blog post on your site, a series of Tweets, a Gist on GitHub. We want to hear from you. When you post, please add #CircuitPython2022 and email circuitpython2022@adafruit.com to let us know about your post so we can blog it up here.

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 32,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — Pololu’s account of the chip shortage

Wearables — Monster-inspired costuming!

Electronics — How to make your own magnetic field probe!

Python for Microcontrollers — Python on Microcontrollers Newsletter: New Releases of MicroPython and CircuitPython and more! #Python #CircuitPython @micropython @ThePSF

Adafruit IoT Monthly — 2021 in Recap!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — JP’s Product Pick of the Week 1/18/22 KB2040 Kee Boar @adafruit @johnedgarpark #adafruit #newproductpick

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



1 Comment

  1. Hi Susan, please contact the Smithsonian to correct _them_. Thanks!

Sorry, the comment form is closed at this time.