The following instructable describes a easy to build and inexpensive device to perform pressure measurements and demonstrate Boyle’s law, using the micro:bit in combination with the BMP280 pressure/temperature sensor.
Whereas this syringe/pressure sensor combination has already been described in one of my previous instructables, the combination with the micro:bit is offering new opportunities, e.g. for class room projects.
In addition, the number of descriptions of applications in which the micro:bit is used in combination with a I2C driven sensor are rather limited so far. I hope this instructable might be a starting point for other projects.
The device allows to perform quantitative air pressure measurements, and to display the results on the micro:bit LED array or on a connected computer, for the later using the serial monitor or serial plotter functions of the Arduino IDE. In addition you have a haptic feedback, as you will push or pull the plunger of the syringe yourself, and hereby feel the required power.
By default, the display allows you to estimate the pressure by the level indicator shown on the LED matrix. The serial plotter of the Arduino IDE allows to do the same, but with much better resolution (see video). More elaborate solutions are also available, e.g. in the Processing language. You also can display the precise measured values of pressure and temperature on the LED matrix after pressing the A or B buttons respectively, but the serial monitor of the Arduino IDE is much faster, allowing to display values in near real time.
Total costs and the technical skills required to build the device are rather low, so it could be a nice classroom project under supervision of a teacher. In addition the device could be a tool for STEM projects with focus on physics or used in other projects where a force or weight shall be transformed into a digital value.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.