Dr. Pardis Sabeti #AsianPacificAmericanHeritageMonth

Adafruit asian pacific american heritage month 2018 blog

Dr. Pardis Sabeti is the computational geneticist heading the Sabeti Lab which uses computational methods and genomics to study of humans and pathogens

NewImage

From Smithsonian.com:

Sabeti was convinced that there was a way to pinpoint when more recent changes in the human genome had occurred and that this knowledge could lead to breakthroughs in fighting disease. Specifically, she wanted to use the makeup of neighborhoods of genes (called haplotypes) to determine if a specific gene variation (called an allele) in a given neighborhood had recently come to prominence in a population because it conferred an evolutionary advantage. This should be possible, she thought, by using the never-ending process of genetic recombination—the breaking and rejoining of DNA strands—as a kind of clock to measure how long ago a given mutation had swept through a population. If a widespread mutation had appeared recently—for instance, the mutation that enabled adult human beings to digest the lactose in cow’s milk, a nutritional advantage for many people in Europe after cows became common there—fewer recombination events would have occurred since it was introduced. As a result, the mutated version of that allele should be on a stretch of DNA that was more or less identical for everyone in a population. If the mutation had appeared a longer time ago, recombination would dictate that the area around the mutated allele would have gone through more random recombination events and it would be on a stretch of DNA that was more varied across the population.

It was a radical approach: Instead of using existing tools to analyze new data, she was trying to develop new tools to use on available data. When she was at Oxford, “Everybody thought what I was trying to look for was dumb,” Sabeti says. “It seemed as if I was just going to go nowhere. I know everyone has a hard time at some point when they’re in graduate school, but I was on the higher end of the hard time early on in my PhD.”

Nevertheless, Sabeti returned to Boston to attend Harvard Medical School and kept at it, taking “a series of little steps,” she says. “I was just charting my path in my own weird ways.” Then, early one morning, she plugged a large data set related to the DC40L gene, which she’d already linked to malaria resistance, into an algorithm she’d developed and watched results showing it was associated with a common haplotype—indicating it had recently been selected for—come into focus on her computer screen.

“I was just sort of beside myself with excitement,” she says. “It’s a really exciting moment when you know something about the whole world that no one else does. I wanted to call somebody, but didn’t know anybody I felt comfortable calling at 3 a.m.”

Read more from Smithosnian.com or the Sabeti Lab, and follow Dr. Sabeti on Twitter.


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.