Interact with the World like a Cat with this Whisker Sensory Extension #WearableWednesday


From metaterra on Instructables:

This project, like my previous Ultrasonic Sensory Extension Wearable, was designed/created for multiple purposes, a couple of which being: wearable-assisted (See Figure 1) pet care and empathy research and application (specific to animals with vibrissae, see Figure 2) as well as basic sensory augmentation research (specifically, the tactile-to-tactile variety).

Here’s a cursory overview of the components and their functions:

– Two sets of custom built flex sensor whisker devices (total of 8, 4 per side) receive tactile information (bend, flex, etc.) from objects in the user’s immediate environment. The initial voltage/resistance information received by each sensor is then converted to bend angle information (e.g., a bend angle of 10 degrees). This bend angle information is subsequently converted to proportional pulse width modulation output and sent to corresponding vibrotactile displays on the user’s forehead.

– Each whisker sensor has its own SparkFun ProMini 3.3V/8MHz microprocessor that does the transducing/converting. There are two circuits operating on each ProMini (this approach was necessary to alleviate motor EMI disturbance issues). One functions to input whisker information while the other outputs PWM commands to the coupled vibrating mini motor disc located in the vibrotactile display situated on the user’s forehead. Each circuit is powered independently through one of the outputs of a dual output battery.

– Two vibrotactile displays supply tactile stimuli to the user’s forehead. Each motor housed within the two displays is coupled to its own whisker (in the same orientation as the whiskers on the face), functioning in such a way as to reflect the whisker’s bend angle in the form of vibration information. Vibration intensity is proportional to whisker bend angle (e.g., 10-degree bend angle –> 40 units PWM output, etc.).

Thanks to sensory substitution/augmentation phenomena (neuroplasticity; intra-modal plasticity), it’s plausible that, after a given training period, an individual could extend their pre-existing somatosensory apparatus into the realm of these new whisker-like appendages, as blind individuals utilizing tactile-to-vision sensory substitution do (e.g., the use of a walking cane, see Figure 3). It’s plausible that the somatosensory (SS) cortex (mediated through stimulation of forehead skin receptors) could, over time, develop a new “whisker representation” housed somewhere in SS cortex. This type of sensory extension has already been shown in multiple studies (e.g., Sensory Augmentation for the Blind [tactile-to-direction sensory augmentation through the use of a vibrotactile display worn around the waist], Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis [although brain-invasive techniques are used here, this supports the concept of cortical re-mapping], etc.). Now let’s make some whiskers!

Read more

Flora breadboard is Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here:

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in!

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community!

CircuitPython – The easiest way to program microcontrollers –

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.